Utah Division of Water Quality Statement of Basis ADDENDUM Wasteload Analysis and Antidegradation Level I Review - FINAL

Date: December 14, 2015

Facility:Provo City Water Reclamation Facility
UPDES No. UT0021717

Receiving water: Mill Race (2B, 3B, 4)

This addendum summarizes the wasteload analysis that was performed to determine water quality based effluent limits (WQBEL) for this discharge. Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses (UAC R317-2-8). Projected concentrations are compared to numeric water quality standards to determine acceptability. The numeric criteria in this wasteload analysis may be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality.

Discharge

Outfall 001: Mill Race \rightarrow Provo Bay in Utah Lake

The maximum daily design discharge is 28.0 MGD and the maximum monthly design discharge is 21.0 MGD for the facility.

Receiving Water

The receiving water for Outfall 001 is Mill Race, which is tributary to Provo Bay in Utah Lake.

Per UAC R317-2-13.5.c, the designated beneficial uses for Mill Race from Interstate Highway 15 to the Provo City wastewater treatment plant discharge are 2B, 3B, and 4.

- Class 2B Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.
- Class 3B Protected for warm water species of game fish and other warm water aquatic life, including the necessary aquatic organisms in their food chain.
- Class 4 Protected for agricultural uses including irrigation of crops and stock watering.

Typically, the critical flow for the wasteload analysis is considered the lowest stream flow for seven consecutive days with a ten year return frequency (7Q10). Due to a lack of flow records for Mill Race, the 20th percentile of flow measurements from sampling station 4996570 Mill Race above Provo WWTP was calculated to estimate annual critical flow in the receiving water (Table 1).

Table 1: Annual critical low flow

Season	Flow (cfs)		
Summer	2.0		
Fall	2.0		
Winter	1.8		
Spring	2.0		

<u>TMDL</u>

Mill Race was not listed as impaired for any parameters according to the 2010 303(d) list. Utah Lake was listed as impaired for Total Dissolved Solids, Total Phosphorus and PCBs in Fish Tissue in the 2010 303(d) list Integrated Report (DWQ, 2010).

Mixing Zone

The maximum allowable mixing zone is 15 minutes of travel time for acute conditions, not to exceed 50% of stream width, and 2,500 feet for chronic conditions, per UAC R317-2-5. Water quality standards must be met at the end of the mixing zone. The discharge is considered instantaneously fully mixed since the effluent discharge is twice the background receiving water flow; therefore, no mixing zone is allowed per UAC R317-2-5.

Parameters of Concern

The potential parameters of concern identified for the discharge/receiving water were total suspended solids (TSS), dissolved oxygen (DO), BOD₅, total phosphorus (TP), total nitrogen (TN), total ammonia (TAN), total residual chlorine (TRC), and pH as determined in consultation with the UPDES Permit Writer.

Water Quality Modeling

A QUAL2Kw model of the receiving water was built and calibrated to synoptic survey data collected by DWQ staff in October and November of 2014 using standard operating procedures (DWQ 2012). The model of Mill Race extends 4.2 kilometers downstream from the treatment facility outfall to the open waters of Provo Bay.

Ambient receiving water quality data were obtained from monitoring site 4996570 Mill Race above Provo WWTP. The average seasonal value was calculated for each constituent with available data in the receiving water. Effluent parameters were characterized using data from monitoring site 4996560 Provo WWTP.

The QUAL2Kw model was used for determining the WQBELs for parameters related to eutrophication and in-stream DO criteria, as well as ammonia toxicity. Effluent concentrations were adjusted so that water quality standards were not exceeded in the receiving water. Where WQBELs exceeded secondary standards or technology based effluent limits (TBEL), the concentration in the model was set at the secondary standard or TBEL.

The QUAL2Kw model was also used to determine the limits for ammonia. The water quality standard for chronic ammonia toxicity is dependent on temperature and pH, and the water quality standard for acute ammonia toxicity is dependent on pH. QUAL2Kw rates, input and output for DO and eutrophication related constituents are summarized in Appendix A.

A mass balance mixing analysis was conducted for conservative constituents such as dissolved metals. The WQBELs for conservative constituents are summarized in Appendix B.

The limits for total residual chlorine were determined assuming a decay rate of 20 /day (at 20 °C) and a travel time in the outlet pipe of 5 minutes prior to discharge to Mill Race. The analysis for TRC is summarized in Appendix C.

The calibration and wasteload models are available for review by request.

Whole Effluent Toxicity (WET) Limits

The percent of effluent in the receiving water in a fully mixed condition, and acute and chronic dilution in a not fully mixed condition are calculated in the WLA in order to generate WET limits. The LC₅₀ (lethal concentration, 50%) percent effluent for acute toxicity and the IC₂₅ (inhibition concentration, 25%) percent effluent for chronic toxicity, as determined by the WET test, needs to be below the WET limits, as determined by the WLA. The WET limit for LC₅₀ is typically 100% effluent and does not need to be determined by the WLA.

Season	Percent Effluent
Summer	94%
Fall	94%
Winter	95%
Spring	94%

Table 2: WET Limits for IC25

Effluent Limits

The effect of the effluent on the DO in the receiving water was evaluated using the QUAL2Kw model. Based on secondary standards for BOD₅ and minimum DO limits, the DO sag downstream of the plant discharge in Mill Race was predicted to remain above the minimum instream criteria (Table 3). New ammonia limits were determined for chronic and acute conditions.

	Acute					
Effluent Constituent	Standard	Limit	Averaging Period	Standard	Limit	Averaging Period
Flow (MGD)	N/A	28.0	1 day	N/A	21.0	30 days
Ammonia (mg/L)						
Summer (Jul-Sep)		8.0*	1		3.0*	
Fall (Oct-Dec)	Varies	12.0*	1 hour	Varies	4.0*	30 days
Winter (Jan-Mar)		20.0*			5.0*	
Spring (Apr-Jun)		12.0*			3.5*	
Total Residual Chlorine (mg/L)	0.019	0.022	1 hour	0.011	0.013	4 days
Min. Dissolved Oxygen (mg/L)						
Summer (Jul-Sep)		5.0				
Fall (Oct-Dec)	5.0	5.0	Instantaneous			
Winter (Jan-Mar)		5.0	P			
Spring (Apr-Jun)		5.0				
Min. Dissolved Oxygen (mg/L)						
Summer (Jul-Sep)		6.0			5.5	
Fall (Oct-Dec)	6.0	6.0	7 days	5.5	5.5	30 days
Winter (Jan-Mar)		6.0			5.5	
Spring (Apr-Jun)		6.0			5.5	
$BOD_5 (mg/L)$						
Summer (Jul-Sep)		35.0*			25.0*	
Fall (Oct-Dec)	N/A	35.0*	7 days	N/A	25.0*	30 days
Winter (Jan-Mar)		35.0*			25.0*	
Spring (Apr-Jun)		35.0*			25.0*	
*Higher limit as compared to current p	ermit limit.					

Table 3: Water Quality Based Effluent Limits Summary

Antidegradation Level I Review

The objective of the Level I ADR is to ensure the protection of existing uses, defined as the beneficial uses attained in the receiving water on or after November 28, 1975. No evidence is known that the existing uses deviate from the designated beneficial uses for the receiving water. Therefore, the beneficial uses will be protected if the discharge remains below the WQBELs presented in this wasteload.

A Level II Antidegradation Review (ADR) is required if any of the pollutant concentration or load limits are raised from the current permit.

Prepared by: Nicholas von Stackelberg, P.E. Standards and Technical Services Section

Documents

WLA Document: provo_potw_wla_2015_final_2015-12-14.docx QUAL2Kw Calibration Model: provo_potw_q2kw_cal_2015.xlsm QUAL2Kw Wasteload Model: provo_potw_q2kw_wla_2015_v3.xlsm

References

Utah 2010 Integrated Report. 2010. Utah Division of Water Quality.

Utah Wasteload Analysis Procedures Version 1.0. 2012. Utah Division of Water Quality.

Field Data Collection for QUAL2Kw Model Build and Calibration Standard Operating Procedures Version 1.0, 2012. Utah Division of Water Quality.

Using QUAL2K Modeling to Support Nutrient Criteria Development and Wasteload Analyses in Utah. 2012. Neilson, B.T., A.J. Hobson, N. von Stackelberg, M. Shupryt, and J.D. Ostermiller.

WASTELOAD ANALYSIS [WLA] Appendix A: QUAL2Kw Analysis for Eutrophication

Discharging Facility: UPDES No: Permit Flow [MGD]:	Provo WWTP UT-0021717 21.00 Maximum Monthly Flow 28.00 Maximum Daily Flow	
Receiving Water: Stream Classification: Stream Flows [cfs]:	Mill Race 2B, 3B, 4 2.0 Summer (July-Sept) 2.0 Fall (Oct-Dec) 1.8 Winter (Jan-Mar) 2.0 Spring (Apr-June)	Critical Low Flow
Acute River Width: Chronic River Width:	100.0% 100.0%	

Modeling Information

A QUAL2Kw model was used to determine these effluent limits,

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Headwater/Upstream Information	Summer	Fall	Winter	Spring
Flow (cfs)	2.0	2.0	1.8	2.0
Temperature (deg C)	25.0	14.3	9.9	13.9
Specific Conductance (µmhos)	850	882	998	824
Inorganic Suspended Solids (mg/L)	2.9	6.5	10.2	6.1
Dissolved Oxygen (mg/L)	10.6	9.9	12.1	11.2
CBOD₅ (mg/L)	2.5	2.7	2.7	1.9
Organic Nitrogen (mg/L)	0.376	0.488	0.251	0.263
NH4-Nitrogen (mg/L)	0.030	0.044	0.052	0.051
NO3-Nitrogen (mg/L)	2.366	2.643	2.675	2.011
Organic Phosphorus (mg/L)	0.000	0.000	0.000	0.000
Inorganic Ortho-Phosphorus (mg/L)	0.090	0.082	0.215	0.075
Phytoplankton (µg/L)	0.0	0.0	0.0	0.0
Detritus [POM] (mg/L)	0.3	0.7	1.1	0.7
Alkalinity (mg/L)	294	300	300	261
pH	8.2	8.3	8.5	8.6

Date: 12/13/2015

Utah Division of Water Quality

Discharge Information				
Chronic	Summer	Fall	Winter	Spring
Flow (cfs)	21.0	21.0	21.0	21.0
Temperature (deg C)	22.1	18.3	13.1	16.2
Inorganic Suspended Solids (mg/L)	0.0	0.0	0.0	0.0
Organic Nitrogen (mg/L)	2.020	4.154	2.778	3.413
NO3-Nitrogen (mg/L)	18.072	22.396	23.500	20.367
Organic Phosphorus (mg/L)	0.000	0.000	0.224	0.242
Inorganic Phosphorus (mg/L)	2.737	2.907	2.846	2.191
Alkalinity (mg/L)	158	141	134	161
pH	7.3	7.2	7.1	7.4
Acute	Summer	Fall	Winter	Spring
Flow (cfs)	Summer 28.0	Fall 28.0	Winter 28.0	Spring 28.0
Flow (cfs) Temperature (deg C)				
Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L)	28.0	28.0	28.0	28.0
Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L)	28.0 22.1	28.0 18.3	28.0 13.1	28.0 16.2
Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L)	28.0 22.1 0.0	28.0 18.3 0.0	28.0 13.1 0.0	28.0 16.2 0.0
Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L)	28.0 22.1 0.0 2.020	28.0 18.3 0.0 4.154	28.0 13.1 0.0 2.778	28.0 16.2 0.0 3.413
Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L) Inorganic Phosphorus (mg/L)	28.0 22.1 0.0 2.020 18.072	28.0 18.3 0.0 4.154 22.396	28.0 13.1 0.0 2.778 23.500	28.0 16.2 0.0 3.413 20.367
Flow (cfs) Temperature (deg C) Inorganic Suspended Solids (mg/L) Organic Nitrogen (mg/L) NO3-Nitrogen (mg/L) Organic Phosphorus (mg/L)	28.0 22.1 0.0 2.020 18.072 0.000	28.0 18.3 0.0 4.154 22.396 0.000	28.0 13.1 0.0 2.778 23.500 0.224	28.0 16.2 0.0 3.413 20.367 0.242

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Effluent Limitations based upon Water Quality Standards for DO

and Ammonia Toxicity

In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent limitation as follows:

Chronic	Time Period	Standard	Summer	Fall	Winter	Spring
Flow (MGD)	Monthly	N/A	21.0	21.0	21.0	21.0
NH4-Nitrogen (mg/L)	30 day	Varies	3.0	4.0	5.0	3.5
CBOD ₅ (mg/L)	7 day	N/A	35.0	35.0	35.0	35.0
CBOD ₅ (mg/L)	30 day	N/A	25.0	25.0	25.0	25,0
Dissolved Oxygen [Minimum] (mg/L)	7 day	6.0	6.0	6.0	6.0	6.0
Dissolved Oxygen [Minimum] (mg/L)	30 day	5.5	5.5	5.5	5.5	5.5
Acute	Time Period	Standard	Summer	Fall	Winter	Spring
Flow (MGD)	Daily	N/A	28.0	28.0	28.0	28.0
NH4-Nitrogen (mg/L)	1 hour	Varies	8.0	12.0	20.0	12.0
Dissolved Oxygen [Minimum] (mg/L)	Instantaneous	5.0	5.0	5.0	5.0	5.0

Summary Comments

The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important down-stream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met.

Coefficients and Other Model Information

	Maha	Linite
Parameter	Value	Units
Stoichiometry:	40	gC
Carbon	7.2	gN
Nitrogen	1	•
Phosphorus		gP aD
Dry weight	100	gD
Chlorophyll	1	gA
Inorganic suspended solids:	0.004	and the
Settling velocity	0.001	m/d
Oxygen:		
Reaeration model	Thackston-D	awson
Temp correction	1.024	
Reaeration wind effect	None	
O2 for carbon oxidation	2.69	gO2/gC
O2 for NH4 nitrification	4.57	gO2/gN
Oxygen inhib model CBOD oxidation	Exponential	
Oxygon inhib parameter CBOD oxidation	0.60	L/mgO2
Oxygen inhib model nitrification	Exponential	
Oxygen inhib parameter nitrification	0.60	L/mgO2
Oxygen enhance model denitrification	Exponential	
Oxygen enhance parameter denitrification	0.60	L/mgO2
Oxygen inhib model phyto resp	Exponential	
Oxygen inhib parameter phyto resp	0.60	L/mgO2
Oxygen enhance model bot alg resp	Exponential	-
Oxygen enhance parameter bot alg resp	0.60	L/mgO2
Slow CBOD:		
Hydrolysis rate	0	/d
Temp correction	1.047	
Oxidation rate	0.103	/d
Temp correction	1.047	
Fast CBOD:		
Oxidation rate	10	/d
	1.047	-
Temp correction		
Organic N:	0.88487524	/d
Hydrolysis	1.07	
Temp correction	0.001617	m/d
Settling velocity	0.001017	
Ammonium:	0.9748342	/d
Nitrification	1.07	,u
Temp correction	1.07	
Nitrate:	0.00002206	/d
Denitrification	0.90803306	/u
Temp correction	1.07	m/d
Sed denitrification transfer coeff	0.072025	m/d
Temp correction	1.07	
Organic P:		(.)
Hydrolysis	0.79654366	/d
Temp correction	1.07	
Settling velocity	0.068508	m/d
Inorganic P:		
morganic F.		
Settling velocity	0.04166 0.59075	m/d mgO2/L

Utah Division of Water Quality

	Phytoplankton:					
	Max Growth rate				2 9044	(d
	Temp correction				2.8944 1.07	/d
	Respiration rate					L1
	Temp correction				0.480803	/d
	Death rate				1.07	(.)
	Temp correction				0.86518	/d
	Nitrogen half sat constant				1	
	Phosphorus half sat constant				15	ugN/L
	Inorganic carbon half sat constant				2	ugP/L
	Phytoplankton use HCO3- as substrate				1.30E-05	moles/L
	Light model				Yes	
	Light constant				Smith	1
	Ammonia preference				57.6	langleys/d
	Settling velocity				25.4151	ugN/L
	Bottom Plants:				0.468545	m/d
	Growth model				Zana and a	
	Max Growth rate				Zero-order	D/ 0/1 //
	Temp correction				6.069185	gD/m2/d or /d
	First-order model carrying capacity				1.07	D/ 0
	Basal respiration rate				100	gD/m2
	Photo-respiration rate parameter				0.037745	/d
	Temp correction				0.01	unitless
	Excretion rate				1.07	14
	Temp correction				0.195178	/d
	Death rate				1.07	L1
	Temp correction				0.370024	/d
	External nitrogen half sat constant				1.07	
	External phosphorus half sat constant				723.2564	ugN/L
	Inorganic carbon half sat constant				127.5683	ugP/L
	Bottom algae use HCO3- as substrate				7.48E-06	moles/L
	Light model				Yes	
	Light constant				Smith	
	Ammonia preference				64.836	mgO^2/L
	Subsistence quota for nitrogen				28.13175	ugN/L
	Subsistence quota for phosphorus				17.6252	mgN/gD
	Maximum uptake rate for nitrogen				3.101765	mgP/gD
	Maximum uptake rate for phosphorus				109.4795 128.6696	mgN/gD/d
	Internal nitrogen half sat ratio		9		2.358872	mgP/gD/d
	Internal phosphorus half sat ratio				3.7871525 ···	
	Nitrogen uptake water column fraction				1	
	Phosphorus uptake water column fraction				1	
	Detritus (POM):					
	Dissolution rate				0.658467	/d
	Temp correction				1.07	74
	Settling velocity				0.61912	m/d
	pH:				0.01912	nwa
	Partial pressure of carbon dioxide				370	ppm
					510	ppm
Atmo	spheric Inputs:	Summer	Fall	Winter	Spring	
	Air Temperature, F	89.5	49.4	42.5	74.1	
	Air Temperature, F	61.6	31.4	24.5	48.4	
	Point, Temp., F	58.6	35.0	30.3	48.5	
	ft./sec. @ 21 ft.	6.6	5.2	6.0	7.4	
	Cover. %	10%	10%	10%	10%	
	,	1070	1070	10.70	10%	
Othe	r Inputs:					
	n Algae Coverage	100%				
	n SOD Coverage	100%				
	ribed SOD, gO ₂ /m^2/day	0				
	need oob, gozini ziday	U				

WASTELOAD ANALYSIS [WLA] Appendix B: Mass Balance Mixing Analysis for Conservative Constituents

Discharging Facility: UPDES No: Permit Flow [MGD]:	Provo WWTP UT-0021717 21.00 Maximum Monthly Flow 28.00 Maximum Daily Flow	
Receiving Water: Stream Classification: Stream Flows [cfs]:	Mill Race 2B, 3B, 4 2.0 Summer (July-Sept) 2.0 Fall (Oct-Dec) 1.8 Winter (Jan-Mar) 2.0 Spring (Apr-June)	Critical Low Flow
Acute River Width: Chronic River Width:	100.0% 100.0%	

Modeling Information

A simple mixing analysis was used to determine these effluent limits.

Model Inputs

The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge.

Headwater/Upstream Information

	7Q10 Flow	
	cfs	
Summer	2.0	
Fall	2.0	
Winter	1.8	
Spring	2.0	

Discharge Information

	Flow
	MGD
Maximum Daily	28.0
Maximum Monthly	21.0

All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality.

Effluent Limitations

Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9).

Other conditions used in the modeling effort reflect the environmental conditions expected at low stream flows.

Page B-1

Date: 12/13/2015

Effluent Limitations for Protection of Recreation (Class 2B Waters)

Parameter Physical	Maximum Concentration
pH Minimu	m 6.5
pH Maximu	m 9.0
Bacteriological	
E. coli (30 Day Geometric Mea	n) 206 (#/100 mL)
E. coli (Maximu	m) 668 (#/100 mL)

Effluent Limitations for Protection of Aquatic Wildlife (Class 3B Waters)

Parameter Physical	Maximum Co	ncentration		
Inorganics	Chronic Standa	rd (4 Day Average)	Acute Standard	(1 Hour Average)
	Standard	Limit	Standard	Limit
Phenol			0.010	0.010 mg/L
Hydrogen Sulfide (Undissociate	d)		0.002	0.002 mg/L

Total Recoverable Metals

	Chronic St	ic Standard (4 Day Average) Acute Standard (1 Hour Average)					
Parameter (µg/L)	Standard ¹	Background ²	Limit	Standard ¹	Background ²	Limit	
Aluminum	N/A ³	20.6	N/A	750	20.6	802	
Arsenic	150	2.8	164	340	2.8	364	
Cadmium	0.5	0.2	0.6	5.6	0.2	6.0	
Chromium VI	11.0	2.9	11.8	16.0	2.9	16.9	
Chromium III	188	2.9	206	3,931	2.9	4,212	
Copper	21.0	3.4	22.7	34.3	3.4	36.5	
Cyanide	5.2	3.5	5.4	22.0	3.5	23.3	
Iron				1,000	19.3	1,070	
Lead	10.7	0.6	11.6	274.2	0.6	294	
Mercury	0.012	0.008	0.012	2.4	0.008	2.6	
Nickel	117	3.7	127	1,050	3.7	1,124	
Selenium	4.6	2.0	4.8	18.4	2.0	19.6	
Silver				19.4	9.7	20.1	
Tributylin	0.072	0.048	0.074	0.46	0.048	0.49	
Zinc	268	13.0	293	268	13.0	287	

1: Based upon a Hardness of 259 mg/l as CaCO3

2: Background concentration assumed 67% of chronic standard

3: Where the pH is equal to or greater than 7.0 and the hardness is equal to or greater than 50 ppm as CaCQ in the receiving water after mixing, the 87 ug/L chronic criterion (expressed as total recoverable) will not apply, and aluminum will be regulated based on compliance with the 750 ug/L acute aluminum criterion (expressed as total recoverable).

Utah Division of Water Quality

Organics [Pesticides]

cs [Pesticides]						
	Chronic Sta	andard (4 Day A	verage)	Acute Sta	ndard (1 Hour A	verage)
Parameter (µg/L)	Standard	Background	Limit	Standard	Background	Limit
Aldrin		-		1.500	1.000	1.536
Chlordane	0.0043	0.0029	0.0044	1.200	0.003	1.286
DDT, DDE	0.001	0.0007	0.0010	0.550	0.001	0.589
Diazinon	0.17	0.1133	0.175	0.17	0.113	0.174
Dieldrin	0.0056	0.0037	0.0058	0.240	0.004	0.257
Endosulfan, a & b	0.056	0.0373	0.058	0.110	0.037	0.115
Endrin	0.036	0.0240	0.037	0.086	0.024	0.090
Heptachlor & H. epoxide	0.0038	0.0025	0.0039	0.260	0.003	0.278
Lindane	0.08	0.0533	0.08	1.000	0.053	1.068
Methoxychlor				0.030	0.020	0.031
Mirex				0.001	0.001	0.001
Nonylphenol	6.6	4.4	6.8	28.0	4.4	29.7
Parathion	0.0130	0.0087	0.0134	0.066	0.009	0.070
PCB's	0.014	0.0093	0.014			
Pentachlorophenol	15.00	10	15.5	19.000	10.0	19.643
Toxephene	0.0002	0.0001	0.00020635	0.730	0.0001	0.782

Radiological

Parameter	Maximum Concentration
Gross Alpha	15 pCi/L

Effluent Limitation for Protection of Agriculture (Class 4 Waters) Maximum Concentration

	Maximum Co	ncentration	
Parameter	Standard	Background	Limit
Total Dissolved Solids (mg/L)	1,200	521	1,249
Boron (µg/L)	750	110	796
Arsenic (µg/L)	100	2.8	107
Cadmium (µg/L)	10	0.2	10.7
Chromium (µg/L)	100	2.9	107
Copper (µg/L)	200	3.4	214
Lead (µg/L)	100	0.6	107
Selenium (µg/L)	50	2.0	53.4
Gross Alpha (pCi/L)	15	10	15.4

WASTELOAD ANALYSIS [WLA] Appendix C: Total Residual Chlorine

Discharging Facility: Provo WWTP UPDES No: UT-0021717

CHRONIC

CHRONIC									te (/day)	1		
	Season	Receiving Water	Standard	Total Effluent	Mixing Zone Boundary	Effluent Limit Without Decay		@ 20 deg C	@ T deg C	Travel Time (min)	Decay Coefficient	Effluent Limit
Discharge (cfs)	Summer	2.0		32.5	34.5		·	ſ			Į	
	Fall	2.0		32.5	34.5							
	Winter	1.8		32.5	34.3							
	Spring	2.0		32.5	34.4		_					
TRC (mg/L)	Summer	0.000	0.011			0.012	22.1	29.86	32.8	5	0.8923	0.013
	Fall	0.000	0.011			0.012	18.3	29.86	27.6	5	0.9087	0.013
	Winter	0.000	0.011			0.012	13.1	29.86	21.8	5	0.9272	0.013
	Spring	0.000	0.011			0.012	16.2	29.86	25.0	5	0.9168	0.013

ACUTE								Decay Ra	te (/day)			
		Receiving		Total	Mixing Zone	Effluent Limit	Temperature			Travel	Decay	Effluent
	Season	Water	Standard			Without Decay		@ 20 °C	@ T °C	Time (min)		Limit
Discharge (cfs)	Summer	2.0		43.3	45.3			-				
	Fall	2.0	I	43.3	45.3							
	Winter	1.8		43.3	45.1							
	Spring	2.0		43.3	45.3				-			
TRC (mg/L)	Summer	0.000	0.019			0.020	22.1	29.86	32.8	5	0.8923	0.022
	Fall	0.000	0.019			0.020	18.3	29.86	27.6	5	0.9087	0.022
	Winter	0.000	0.019			0.020	13.1	29.86	21.8	5	0.9272	0.021
	Spring	0.000	0.019			0.020	16.2	29.86	25.0	5	0.9168	0.022

Date: 12/13/2015